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Problems consisting in finding the ground state of particles interacting with a given potential constrained to
move on a particular geometry are surprisingly difficult. Explicit solutions have been found for small numbers
of particles by the use of numerical methods in some particular cases such as particles on a sphere and to a
much lesser extent on a torus. In this paper we propose a general solution to the problem in the opposite limit
of a very large number of particles M by expressing the energy as an expansion in M whose coefficients can
be minimized by a geometrical ansatz. The solution is remarkably universal with respect to the geometry and
the interaction potential. Explicit solutions for the sphere and the torus are provided. The paper concludes with
several predictions that could be verified by further theoretical or numerical work.
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I. INTRODUCTION

Problems related to determining optimal particle distribu-
tions under constraints are ubiquitous in the traditional sci-
ences and have been under intense scrutiny in the mathemati-
cal community [1,2]. Two of the many interesting examples
are the determination of the ground states of M particles
constrained to move on a sphere and interacting with a Cou-
lomb potential, the so called Thomson problem [3], whose
more direct representation are classical electrons on helium
bubbles [4] and the crystallization of particles on spheres,
relevant for understanding the structure of poly(methyl meth-
acrylate) (PMMA) beads on oil or water droplets [5]. Similar
problems on more general geometries such as the torus or
negative curvature surfaces are also of great experimental
and theoretical interest [6—8].

Theoretical investigations are surprisingly difficult. Ex-
tensive numerical results obtained in the Thomson problem
[9-11], for example, show that the number of metastable
states grows very fast with the total number of particles,
preventing a numerical solution to the problem even for a
number of particles of a few hundred. For problems on a
sphere, a few rigorous analytical results and conjectures on
the energy of the ground state for large numbers of particles
exist [2,8], but a description of the structure of these ground
states, including practical tools on how to find them as well
as their generalization to any given arbitrary geometry, re-
mains a completely open problem.

Recently, it has been shown that elasticity theory
[6,12-14] (see also [15,16]) provides a powerful framework
to discuss the best particle configurations on spheres, which
can then be easily generalized to deal with any arbitrary ge-
ometry. Building on these results, we propose a general so-
lution for the structure of ground states on arbitrary geom-
etries in the limit of a large number of particles, and we
construct the explicit solutions for the case of a sphere and a
torus. The solution is universal, in the sense that it applies for
short-ranged potentials and, in some situations, for long-
ranged potentials as well.

In this paper, we will argue that the problem of finding the
ground state of particles under constraints is equivalent to
finding the particle distribution that is closer to a perfectly
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equilateral triangulation [17] (the triangulation constructed
from the actual distribution of particles via its Delaunay or
Voronoi construction). The constraints that we consider in
this paper are either geometrical (particles constrained on a
sphere, torus, etc.) or topological (particles on a disk with the
constraint that the total disclination charge is nonzero). If the
particles are on a plane, the absolute ground state is a trian-
gular lattice. The question is how the geometrical or topo-
logical constraints will modify this lattice.

The effect of the constraints is to induce spatial variations
of the lattice constant, as sketched in Fig. 1 for a square
lattice. This is the same situation that was first addressed by
Frank [18] in the context of crystal growth, where he showed
that in order to minimize the strains induced by the variable
spacing it was necessary to add additional rows of atoms,
that is, dislocations, which correct the spatial variations in
the lattice constant. Another critical result that we use in this
paper is that the energy of particles interacting with a given
potential can be regarded as an expression for a large number
of particles M [12,19] whose leading coefficient contains a
term, the C function, which is always positive and encodes
the dependence on both geometry and topological defects. In
this paper we will show how by adding dislocations it is
possible to construct particle densities such that the C coef-
ficient becomes identically zero at leading order in M
(reaches its minimum value) thus providing explicit ground
states for very large numbers of particles.

Although our arguments will be restricted to crystalliza-
tion driven by energy, we believe that the geometric argu-

FIG. 1. Typical distortions due to geometric constraints on a
perfect square lattice. If an additional row of atoms somewhere in
the middle of the crystal were added, variations of the lattice con-
stant would become very small.
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ments used to construct ground states are general and apply
to entropically driven crystallization such as for hard sphere
potentials, since the entropic crystallization amounts to
maximizing the area of the unit cell for a given packing
fraction, and for larger packing fraction this leads to triangu-
lar lattices.

The organization of the paper is as follows. In Sec. II we
review several results regarding the expansion of the energy
for a large number of particles. In Sec. III we implement the
solution outlined in Fig. 1 for a general triangular wedge,
and it is shown in Sec. IV that the ansatz does minimize the
energy. Explicit results for the sphere and the torus are pro-
vided in Sec. V. We end with a summary of predictions that
follow from this paper as well as with some conclusions in
Sec. VI.

II. ENERGY IN THE LIMIT OF LARGE NUMBER
OF PARTICLES

The energy of M particles interacting with a potential V()
is given by

1 L
E(M) = EE V(r(i) - 7)) (1)
ij
where the sum runs over all M particles at positions
7(i), (i=1,...,M). For definiteness, we discuss the concrete
potential
o2
V(r) = 2)

|
but with minor modifications, the results can be made gen-
eral to include any repulsive potentials. If the particles are
arranged in a configuration close to a triangular lattice, we
write 7(i)=R+u(i)+h(i), where R(i)=a(ne,+me,) define the
vertices of a triangular lattice of lattice constant a and primi-
tive vectors e,,e,, and u and h are small quantities, in the
sense that |u|/a<1. The quantity u represents distortions
tangent to the plane where / is in the perpendicular direction.
The energy Eq. (1) is
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where many higher order terms are neglected because of the
assumed smallness of the displacements u, h. On a more
rigorous basis, this step also requires the potential to be short
ranged (or s>2), thus excluding the Coulomb potential, al-
though for some geometries such as the sphere, we expect
Eq. (3) to hold as well, as will be shown. In the above ex-
pression, the contributions related to the geometry and topo-
logical defects are entirely determined by the terms after the
first.

We now review how the energy can be regarded as an
expansion in a large number of particles. Detailed deriva-
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tions have already been presented somewhere else [12,19],
so we just recall the main results. To avoid excessive gener-
ality and keep the derivation simple, the results will be illus-
trated for the sphere. The first term in Eq. (3) gives the fol-
lowing explicit expression (for 0 <<s<2):

M e’ e’ ( M? o(s)

— +
25(2—s)  2(4m)*?

— =— M1+s/2 + O(Ms/2)>
2 n,m |R(l’l,l’l’l)|3 R

(4)

where R is the sphere radius. The only modification for s
>2 is that the M? term, which arises from the long-range
nature of the potential, is absent. The actual values for the
function 6(s) maybe found in [7,19]. The second contribu-
tion in Eq. (3) is evaluated by retaining the leading term in
an expansion in derivatives, leading to the familiar expres-
sion from elasticity theory

2 2
53 Haglisualiug) + 5 3 D)

=fd27(ﬂuiﬁ+%(uaﬁ)2) (5)

where Uap is the strain tensor and \, u are the Lamé coeffi-
cients, whose explicit expression is [19]

__ 70 e’ 52y = s(s) €
M= (477) 1452 g2+ )  (4m) 2 R

M1+s/2 (6)

for 0<<s<2, s=00, but this is not important here (it becomes
a constraint forcing the incompressibility of the crystal, but it
has been shown that at leading order in M, the relevant elas-
tic constant is the Young modulus, which remains finite
[19]). Tt should be recalled that Eq. (5) involves terms that
are not quadratic, so some higher order terms have been
included. Combining Egs. (5) and (6) it follows that

PA A 2| agles2 ¢’
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where the C function is defined from

C(S,[M]) = (471-)1W f d217< 7](S)M§B+ ?(uaﬂy) . (8)

The C function has dimensions of area. Combining Egs. (7),
(5), and (4) the energy Eq. (3) becomes

B e_2 M? o(s) C(s,[u]))
E(M)_Rs|:23(2_s)+(2(47Ts/2+ R2
XMl+s/2 + 0(MS/2):| ) (9)

Let us now discuss the dependence of the C coefficient on
the sphere radius R. For any configuration [u], we expect
C(s,[u]) = R?, and this implies that the energy at order M'*+*/?
is increased with respect to the planar value Eq. (4). If, how-
ever, one could find a configuration [u] such that its growth
with R is linear at most, then it follows that
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R2
C(s,u) < Ra * ——, (10)
M

where a is the lattice constant and in the last step the relation
V3a2/2=47R*/ M has been used. In this case, for very large
number of particles, the coefficient M'*/? in the energy ex-
pansion is given by the planar result and the configuration
[u] becomes a minimum of the energy in the limit of large
number of particles.

We now analyze the approximation made in ignoring
higher derivative terms in Eq. (5). Those terms will consist in
higher derivatives of the strain tensor, which in turn will
imply that the elastic constants, equivalent to the Lamé co-
efficients, contribute to terms growing more slowly than
M*?*!, that is, the ignored terms do not affect the leading
term in the expansion defined by Eq. (9).

In generalizing this expansion to other geometries there
are several aspects to consider. First of all, the leading term
for long-range potentials scales like M. The general expres-
sion of the coefficient is

Erdyp)——pl) (1)
eyl

where p(x) is the continuum density (the density of particles
at scales much larger than a). In a sphere, p is constant and
given by p=M/4mR?, but in a general geometry, the density
follows from minimizing the previous equation under the
constraint [d?x p(x)=M (for s=1 this amounts to solving the
Poisson equation for a fixed density of charges). On a torus,
for example, the resulting continuum density p(x) is not con-
stant for s <2. That is, the minimization of the leading coef-
ficient for long-range potentials imposes density variations
and invalidates the form of the coefficient O(M'**'?) previ-
ously discussed. It is possible to generalize the expansion to
include density variations but this will not be done here. On
a general geometry, even for short-ranged potentials, the ex-
pansion Eq. (4) becomes slightly more complicated because
there may be more than one characteristic radius (in a torus,
for example, there are two radii) and the coefficient C will
contain a dependence on the dimensionless parameters that
can be constructed from the geometry (for the torus this is
the aspect ratio, the ratio of the two radii), but the property
defining the ground state configuration is still given by Eq.
(10). The goal is now how to construct those configurations
whose energy grows at most linearly with R.

2
=%
2

III. DISTRIBUTION OF DISLOCATIONS
ON A TRIANGULAR WEDGE

The problem consists now in obtaining the position and
location of the dislocations needed to correct for the variable
lattice constant, as discussed in the Introduction. This will be
obtained from the following geometric argument. Let us con-
sider a triangular patch of a surface like the one shown in
Fig. 2. At one vertex (D in the figure), we place a disclination
of charge g=1 (a vertex with five nearest neighbors), ¢=0 (a
regular sixfold vertex), or g=—1 (a vertex with seven nearest
neighbors).
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D FLAT CASE
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FIG. 2. (Color online) Triangle considered in the argument.

If we assume that a disk is formed out of identical trian-
gular wedges, the angle 2« is given by 2a=27/(6—¢;) (for
g=+1,2a=27/5). We now discuss the necessary condi-
tions so that the wedge may be triangulated with many equi-
lateral triangles. For that matter, we now compute by how
much the length of segment DV, which is given by r, differs
from the length of the segment whose origin is at V and
forms 60° with the segment DV (because we assume that the
triangle whose vertex is at V is equilateral). The quantity to
compute is /(r)—r, which from the purely geometric argu-
ments outlined in Fig. 2 for the geometry of a plane is given
by

q,m
6(6_%'))}1 (12)

if I(r)—r=0, which happens when ¢;=0, the wedge can be
tiled with all perfect equilateral triangles, but if the central
disclination is nonzero, this is not possible. As explained in
the Introduction, we can fix this situation by including (or
removing) additional rows of particles every time the equa-
tion

(r)-r=2 sin<

(r)=r=%*a (13)

is satisfied, where a is the lattice constant. In physical terms
we are adding a dislocation. In the planar case, the formula
above implies that we add a grain boundary of equally
spaced dislocations, where dislocations within the grain are
separated a distance D=a/2 sin[g;7/6(6—g,)]. This result is
well known in metallurgy [20], where grain boundaries of
dislocations in the plane have been extensively investigated.

In an arbitrary geometry, the function I(r) will also de-
pend on the amount of Gaussian curvature enclosed within
the triangular wedge, and this will lead to a different type of
grain boundary. The function I(r) is now obtained from dif-
ferential geometry,

Pa

I(r) = deVga(@) V(@) V(@)

—a/m

im
+ f deVgap( @V (@) V' (¢) (14)

a

where g,, is the metric of the geometry; V* is the tangent
vector of a geodesic, described by coordinates ¢, which
starts at point (r,—/m), the equivalent of point V in Fig. 2,
and forms an angle of 60° with the direction defined by the
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FIG. 3. (Color online) I(r)—r on a sphere for both ¢g=1,0; for a
comparison, the results for the plane are also shown.

geodesic defined by the radial distance r. Once the function
I(r) is known, the location of the additional dislocations
needed to ensure equilateral triangles will be obtained from
the function [/(r)—r from Eq. (13), just as was done for the
planar case. In this paper, the distance /(r) is computed from
a geodesic, but in general this is not necessarily the case, and
examples will be given when discussing the torus. It should
be pointed out that the predictions that follow from Egs. (13)
and (12) are equivalent to a similar formula provided in [12]
only in the plane, and differ on any other geometry.

The simplest nontrivial example involving curvature is a
spherical cap. We introduce a new parameter 6, that defines
the angle subtended by the triangular wedge. We assume

a

Oy = LR (15)
where a is the lattice constant, L the total number of particles
along the radial direction r, and R the radius of the sphere.
We consider a spherical cap both with a g=1 disclination and
without any disclination g=0 at its center, each case relevant
for large and small aperture angle 6, respectively.

The different functions /(r)—r are shown in Fig. 3 for the
cases of a fivefold (¢g=1) and a g=0 disclination and com-
pared to the equivalent results for the plane. The grain
boundaries that follow from the function above and Eq. (13)
are shown in Fig. 4 for the particular situation L=50. In the
figure, squares represent sevenfold and circles represent five-
fold vertices, with dislocations being represented as a five-
seven pair. For large aperture angles the last dislocation has
rotated 180°, and this is a result of the function /(r)—r be-
coming negative at r/R larger than 1.

Generalizations to any other geometry are now possible.
As an example, we discuss a wedge of a torus. The critical
difference from the sphere is that the Gaussian curvature in a
torus is not constant, and that implies that the function I(r) is
different for the different wedges of a central defect. For a
disk with a fivefold defect at its center, the five grain bound-
aries, which are identical for the sphere, become now differ-
ent. The second difference is that the line joining the dislo-
cations is not straight, but curved, and depends on the torus
aspect ratio

r=—, (16)

where R, and R, are the two torus radii. As an example the
functions are shown for an aspect ratio »=1.2. In this case, as
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Spherical cap (L=50)
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FIG. 4. (Color online) Characteristic of grain boundaries of a
spherical cap with different aperture angles with and without a dis-
clination at the origin. Squares are sevenfold vertices and spheres
are fivefold vertices. This plot corresponds to L/a=50.

shown in Fig. 5, only three of the functions /(r) become
different.

IV. ENERGY OF OPTIMAL CONFIGURATIONS

The previous argument provides the exact location where
dislocations need to be added. Next, we compute the energy
of these configurations. We will consider the energy for a
large, yet finite number of particles. The elastic energy Eq.
(5) can be discretized as [14]

1

2
> (|Fpel —a) + 0, (——cos(ﬁdf)) ,
f.d)

P
E(e,0)==
Z(h’c) 2

(17)

where (b,c) runs over edges defined by nearest neighbors
and angles. This energy has a very clear geometric interpre-
tation as providing an energy cost for those triangles that
either are formed of edges whose length is not the lattice
constant, or whose angles are not exactly 60 °. The coeffi-

0.2

{l(r)-ry/R,

s
N
I

— Five-fold (Curve 1) \< s

— - Six-fold (Curvel) >
L - — Five-fold (Curve 2) X
-+ Six-fold (Curve2) Mg P
Five-fold (Curve 3) \
-0.4— \

FIG. 5. (Color online) /(r)—r on a torus at r=1.2 for both ¢
=1,0. If the central defect is oriented as shown in Fig. 8 below only
three functions are needed for g=1 (fivefold). In this case R,/R,
=1.2 and B=0.
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cients &, o are linearly related to the Lamé coefficients
[14,21].

We now evaluate the energy function Eq. (17) in the case
o=0 for the wedge discussed in the previous section. By
construction, the lengths of the edges along the radial dis-
tances r are exactly given by a, the lattice constant, and the
contribution to the energy of these edges is zero, consistent
with the total radial length of the wedge given by H=La,
where a is the lattice constant and L the total number of
edges. The main contribution to the energy then comes from
the vertices along the direction defined by I(r). At radial
distance r=ka there are n(k) of these vertices, and therefore
the average length of nearest neighbors along the radial dis-
tance ka is I(ka)/n(k). The energy Eq. (17) becomes

E [l(ka) - n(k)a]?

EI(S)— 2= n(k)

NdEelaS' (18)

The second term is proportional to the total number of dis-
locations N, and takes into account that next to a dislocation
the strains are significant. This energy includes not only the
core energy but also the (exponentially) small distortions
arising from the grains. At this point it is illustrative to show
the implications of the previous formula for a simple and
well known situation. We now compute the energy of a disk
consisting of no defects other than a central disclination at
the origin. In that case [(r)=br, where b is given from Fig. 2,
and since no additional dislocations are added it is n(r=ka)
=k. The above formula gives (with N,;=0)

R
Ei(e) =52 f D) =P =k (19)
2 r 4

0

as expected, the energy of an isolated disclination grows qua-
dratically with L2, Thus the C coefficient defined by Eq. (8)
will grow as H?, and lead to additional contributions to Eq.
(9) (here H=La plays the role of R in the sphere). All these
results are well known [14,21] but it is of interest to show
how they are recovered within the previous approach. It is
now easy to show that the energy of the configurations that
satisfy Eq. (13) grows more slowly than R. We have

[1(ka) - n(k)a]? "o B
25 o 2w

(20)

where the last step follows because by construction [(r)
—n(r)a never exceeds 1. Within the same assumptions, it is
very simple to repeat the argument for the second term in Eq.
(17) and the same logarithmic behavior is found, so the state-
ment holds for the entire range of elastic constants. As al-
ready mentioned, distortions near dislocations are not en-
tirely negligible, and this leads to a term that grows linearly
with L,

E1(8)=NdEcore~Ha=La2' (21)

As an example of the previous considerations, we discuss
the spherical cap. We determine the best distributions as a
function of 6,,, the subtended angle, and L, the radial number
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FIG. 6. (Color online) Energy of the spherical cap (L=50) with
and without defects. The contribution proportional to the number of
dislocations is not shown.

of particles. As 6,,— 0, the spherical cap becomes a plane
and the ground state should approach the energy of a perfect
planar lattice. As 6, is increased, Gaussian curvature effects
become important, and a disclination at the top of the cap
lowers the energy as shown in the inset of Fig. 6. Upon
including dislocations the energy decreases enormously and
remains essentially independent of the subtended angle in
both cases.

The previous considerations do show that the geometrical
ansatz does provide a minimum energy configuration, albeit
a degenerate one. For the spherical cap, for example, the
minimum energy can be achieved either by a plus disclina-
tion or without any disclinations at all, provided that the
appropriate grain boundaries as defined by Eq. (13) are used.
The next question is therefore which one of these minima is
the actual ground state of the system. This involves consid-
ering the subleading coefficients in the expansion. From Eq.
(20) this is given by the configuration with the lowest pos-
sible number of defects. This still does not completely solve
the problem. One can consider several grain boundaries on
each triangular wedge where the separations of dislocations
within the grain are larger, thus keeping the total number of
defects constant. For the planar case, this question was in-
vestigated in [14] where it was concluded that grain bound-
aries with the smallest spacing within dislocations are fa-
vored. Further numerical investigations will hopefully
provide more evidence on this point.

V. SOLUTIONS FOR THE SPHERE AND THE TORUS
A. The sphere

There are several topological inequivalent triangulations
of a sphere with icosahedral symmetry, and they are labeled
by two integers (n,m). We just describe here in detail the
solutions to the cases (n,n) and (n,0), but solutions of the
form (n,m) may be constructed along the same lines. The
problem consists now in dividing the sphere into triangular
wedges such that they can be consistently joined back to-
gether after the additional dislocations necessary to relieve
the geometric frustration have been included.
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FIG. 7. (Color online) Triangular wedges used to solve the (n,n)
and the (n,0) configurations. Dashed lines follow the directions of
the grain boundaries. Filled circles represent+disclinations, also
marked with D.

The (n,n) configuration can be divided into 20 triangular
wedges like the one shown in Fig. 7 (two triangular wedges
are shown). From the results described for spherical wedges,
the dislocations follow the line AB, and the spacing is pre-
dicted from the function Fig. 3 for an aperture angle 6y,
= @y=arcsin[21/2—1/(215)/\3]=37°. The fact that the
angle ABC is 90° and the angle ACB is 60°, which can be
checked by using formulas in spherical trigonometry, ensures
that neighboring triangular wedges are perfectly joined and
thus the solution is completely consistent.

The triangular wedges for (n,0) are shown in Fig. 7. A
natural patch is defined by DCO, but it should be noted that
CO does not define a row of particles of the crystal. In this
case, the patches extend beyond the point C, and overlap
slightly. The dislocations follow the lines DO and the spac-
ing is predicted from the results from the function Fig. 3 as
in the (n,n) case. Here, however, the consistency is a little
more difficult to check, because in the region defined by such
triangles such as COP, which spans aAJ_erture angles between
(05, By), where 8),= 6s=arccos[1/+/(5)]/2~32°, the differ-
ent patches overlap. The consistency here is because the sum
of the Burgers vectors of the three grain boundaries that ap-
proach point O is zero, which ensures that all rows of par-
ticles added terminate within the patches.

FIG. 8. (Color online) Representation of the torus, with the defi-
nition of the subtended angle. The two circles are geodesics of
maximum and minimum curvature. A fivefold defect on the positive
curvature of the torus has been shown.

B. The torus

The torus is depicted in Fig. 8. There are two radii of
curvature R;,R,, and the aspect ratio is defined by r
=R;/R,>1. As already mentioned the only situation we dis-
cuss concerns short-ranged potentials. The Gaussian curva-
ture of the torus depends only on the coordinate ¢, and it is

cos(¢)

- R%[r +cos(g)] 22)

Since Gaussian curvature attracts like sign disclinations [6],
we assume here that the ground state of the torus contains 12
positive disclinations located along the geodesic of maxi-
mum curvature (outer curve) and 12 negative disclinations
along the geodesic of minimum curvature (inner curve), and
several grain boundaries of dislocations. Another possibility
would be a ground state consisting of grain boundaries of
dislocations only. It is very likely that for a thin torus r> 1
disclinations may not be favored because nearest-neighbor
disclinations are so far away that radial grain boundaries may
not efficiently screen the strains.

If the ground state contains disclinations, the grain bound-
aries that appear following the fivefold disclinations have
already been computed in Fig. 5. There is a similar function
for the sevenfold disclinations, which are located along the
interior circle in the figure. The function predicting its spac-
ing is given in Fig. 9.

The situation where the ground state of the torus consists
of grain boundaries of dislocations only is qualitative differ-
ent, because in that case, the grain boundaries are not radial,
but follow the directions defined by the azimuthal angle, the
curve AB in Fig. 8, and a similar curve with oppositely ori-
ented dislocations on the inner side of the torus. The particles
are located in rings defined by the condition =const, and
therefore, only =0, 7 are geodesics, which correspond to
the two circles in Fig. 9. As in the sphere, there are other
torus triangulations that may be constructed from twisting
and rejoining the lattice either along the ¢ or the 6 direction,
but the discussion of the grain boundaries in this case is
beyond the scope of this paper.
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FIG. 9. (Color online) I(r)—r on a torus at r=1.2 for both ¢
=1. The different functions are shown. R;/R,=1.2 and B=0.

VI. CONCLUSIONS

We now summarize some of the main predictions that
follow from the results presented in this paper that can be
verified from either numerical simulations or experimental
results.

(1) The ground state consists of grain boundaries of dis-
locations whose exact position and orientation are predicted
from Eq. (13). Explicit examples have been provided for
both the sphere and the torus.

(2) The energy of the ground state tends to a universal
value for a very large number of particles, which is indepen-
dent of the geometry and given by Eq. (4). (For long-range
potentials, there is an additional term, which grows quadrati-
cally with the number of particles.)

(3) For potentials V(r)=e?/r*, the subleading corrections
to the ground state are of order M“*2 in the number of
particles.

(4) The ground state is degenerate at leading order, as
there are some free parameters characterizing the grain
boundaries. This degeneracy is removed at subleading order
by those configurations with the minimum number of dislo-
cations and the lowest possible number of grain boundaries.

There are several ways to verify these predictions. The
main difficulty with numerical minimizations is that it is very
difficult to prepare an initial configuration that will relax to a
previously selected distribution of defects. For the Thomson
problem, however, the ring-removal technique developed by
Toomre [22] seems to generate the type of grain boundaries
that this paper predicts as the ground state. In fact, in [23], it
was shown that these grain boundaries significantly lower
the energy, bringing the icosadeltahedral configurations
closer to the planar limit Eq. (4). It was further speculated
that the true ground state could be achieved by successive
applications of the technique, but this statement was not sub-
stantiated because the actual rings that needed to be removed
were not known. The function in Fig. 3 together with Eq.
(13) does provide the location of the dislocations and there-
fore the actual rings that need to be removed, so the ring-
removal technique appears as a very promising practical tool
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to verify predictions 1-3 for the Thomson problem. It would
also be of great interest to check how these predictions com-
pare with ground states for short-ranged potentials, where the
results of this paper are more rigorously justified.

Evidence on the validity of statements 1-4 has also been
provided from numerical and analytical results in [14], where
by using a discretized version of elasticity theory, it is shown
that predictions 1-4 are verified for a plane with the con-
straint of total disclination charge equal to £1. The methods
presented, however, are far more general and it is expected
that the extension of the results for any geometry will soon
follow.

Statement 2 is in agreement with recent rigorous results
proven for potentials s>2 [7,8]. These results have greater
generality, since they apply to dimensions other than 2. Pre-
liminary results for the torus with short-ranged potentials
have recently become available [24,25] and show density
variations for s <2 and ground states for s >2 with and with-
out disclinations, but the present state of the simulations does
not allow one to make a more quantitative analysis. Experi-
mental evidence can also be used to prove the validity of
statement 1. In [5] it was shown that PMMA beads assemble
on a spherical oil-water interface forming spherical crystals,
which can then be imaged by confocal microscopy. The cur-
rent experiments show that next to fivefold defects additional
dislocations arise, but there are only two of them, instead of
the five predicted by this paper (interestingly this is the num-
ber favored in the flat case [14]). Furthermore, the disloca-
tions within the grain show a constant spacing. This is pos-
sibly due to the fact that the total number of particles is still
too small for the asymptotic results of this paper to apply.
Future experiments with larger particle aggregation numbers
should settle this issue.

An important point that has not been addressed in this
paper is the critical value of M at which the asymptotic so-
Iution proposed will apply. A numerical verification of the
predictions of this paper is currently under way for short-
ranged potentials, and preliminary results indicate that for
the sphere, this number is of the order of 5000 particles at the
very least. We hope to report more on this in the near future.

In applying the formulas derived to a real situation, the
dislocations must be located at points in the crystal, and ac-
cordingly, the spacing of the dislocations must always be an
integer. To apply the previous formulas, the location of the
dislocations must therefore be rounded to the closer integer.
The resulting orientations of the dislocations may also not be
entirely consistent with the location of the crystallographic
axes of the crystal, and this may require, for example, plac-
ing dislocations separated by an odd number of lattice con-
stants [14]. Further numerical work will hopefully clarify
these more technical points.

There are a certain number of issues that this paper has
not addressed. First of all, the ground states discussed for
both the sphere and the torus rigorously apply only for some
“magic” numbers of particles M. We expect that for large
numbers of particles outside these magic numbers, the
ground state solutions should not be very different from the
ones proposed in this paper, since the range of M between
magic numbers is small compared with M itself. We hope
that future numerical work will address this issue.
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In this paper, it has been assumed that the potential is
isotropic. If the potential is not isotropic the ground state on
a plane may not be a triangular lattice, and the present argu-
ments need to be modified. For a very large number of par-
ticles, it should be expected that locally the triangulation will
be very close to the flat case, so similarly as in the isotropic
case, we expect that additional dislocations will be required
to fix the frustration induced by the geometric constraints.

There has been recent interest in understanding similar
problems to the one discussed in this paper where liquid
crystalline order is discussed on a nonzero geometry. Ex-
amples include hexatic [26-28], nematic [29], and smectic
blue phases [30]. The results discussed in this paper, where
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the energy is regarded as an expansion in M and the defects
correct for the geometric frustration, are completely general
and may be generalized to this cases as well. We hope to
report more in the near future.
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